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Beamforming has become an ubiquitous task in aeroacoustic noise measurements for

source localization and power estimation. The standard delay-and-sum (DAS)

beamformer is the most commonly used beamforming algorithm due to its simplicity

and robustness and also serves as the basis for more sophisticated algorithms, such as

reduction equation is a function of many parameters including the microphone

locations, microphone transfer functions, temperature and the cross-spectral matrix

(CSM), where each one of these parameters has a unique uncertainty associated with it.

This paper provides a systematic uncertainty analysis of the DAS beamformer and

Dougherty’s widely used calibration procedure under the assumption that the

underlying mathematical model of incoherent, monopole sources is correct. An

analytical multivariate method based on a first-order Taylor series expansion and a

numerical Monte-Carlo method based on assumed uncertainty distributions for the

input variables are considered. The uncertainty of calibration is analyzed using the

Monte-Carlo method, whereas the uncertainty of the DAS beamformer is analyzed using

both the complex multivariate and the Monte-Carlo methods. It is shown that the

multivariate uncertainty analysis method fails when the perturbations are relatively

large and/or the output distribution is non-Gaussian, and therefore the Monte-Carlo

analysis should be used in the general case. The calibration procedure is shown to

greatly reduce the uncertainties in the DAS power estimates. In particular, 95 percent

confidence intervals for the DAS power estimates are presented with simulated data for

various scenarios. Moreover, the 95 percent confidence intervals for the integrated DAS

levels at different frequencies are computed using experimental data. It is shown that

with experimental data, the 95 percent confidence intervals for the integrated power

levels are within 71 dB of the mean levels when the component uncertainties are set at

low but achievable values.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The use of microphone arrays has become common practice in aeroacoustic testing in recent years. Beamforming
algorithms are used to electronically steer a microphone array to desired regions in space for creating an image of acoustic
sources at a given frequency. This image consists of the sound pressure levels of all the scanning points in the region of
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interest [1,2]. The most widely employed beamforming algorithm in practice is the delay-and-sum (DAS) beamformer
[1–4], which sums the delayed and weighted versions of each microphone signal so that the actual source signals are
reinforced and the unwanted noise signals tend to cancel. Alternative microphone array processing methods, such as the
deconvolution approach for the mapping of acoustic sources (DAMAS) [5], variations of DAMAS including DAMAS2 [6] and
sparsity constrained DAMAS (SC-DAMAS) [7,8], covariance matrix fitting (CMF) [7,8], and CLEAN based on source
coherence (CLEAN-SC) [9], have been developed in order to mitigate the drawbacks of the DAS beamformer, such as low
resolution and frequency-dependent response.

Although the DAS beamformer has been used in many aeroacoustic noise localization studies, a systematic analysis of
its uncertainty is not available to the best of the authors’ knowledge. The purpose of this paper, therefore, is to provide a
detailed uncertainty analysis of the DAS beamformer [1,2] and the popular calibration procedure introduced by Dougherty
[2]. Calibration is applied to account for the errors in the assumed steering vectors and basically consists of measuring the
acoustic free field produced by a single speaker driven by broadband noise in the absence of flow. The eigen-decomposition
of the cross-spectral matrix (CSM) is used to obtain frequency-dependent and complex microphone correction factors for
the assumed dominant monopole output of the speaker. These correction factors are then embedded in the DAS data
reduction equation for better performance.

Uncertainty analysis answers the question of how good the results of an experiment are and, without such an analysis,
it is difficult to state the confidence in the obtained estimates [10]. A standard method to calculate the output uncertainties
is to propagate the uncertainties of the input variables through the data reduction equation (the equation used to estimate
the quantities of interest from the measurements). The data reduction equation is a function of multiple input variables,
most of which are obtained from separate measurements. Note that the uncertainties of the input variables are not
necessarily uncorrelated. For instance, the DAS data reduction equation contains both real- and complex-valued input
variables and, in general, the real and imaginary components of the complex-valued components are correlated. As will be
shown below, this leads to increased complexity in the uncertainty analysis.

Both complex multivariate and Monte-Carlo uncertainty analysis will be considered in this paper. The multivariate
analysis is based on a first-order Taylor series expansion of the quantities of interest and assumes that the perturbations
are relatively small, and hence, the nonlinear terms in the Taylor series expansion are negligible. It also assumes that the
output distributions are Gaussian in order to compute the confidence intervals. The multivariate uncertainty analysis
differs from the classical uncertainty techniques in that it estimates the correlation of the output variables [11]. The
Monte-Carlo method, on the other hand, uses assumed distributions for the input variables, which may be correlated.
Random perturbations for the input variables are drawn from these distributions and the data reduction equation is
evaluated using the perturbed input variables. This process is repeated until the distributions of the output variables have
converged, after which the uncertainty estimate can be readily obtained from these distributions. The advantage of the
multivariate analysis is that it is analytical and can estimate the uncertainties relatively quickly. However, more often than
not, closed-form expressions for the derivatives involved in the Taylor series expansion are not available or very
cumbersome, and the input perturbations are not small enough to assume linearity. In addition, the Gaussian-type
assumptions made when estimating the confidence intervals from the sample covariance matrices might be violated in
practice. Monte-Carlo analysis provides much more flexibility in terms of designing the experiments since the data
reduction equation is already implemented for the experimental analysis and embedding the perturbations of the input
variables to this equation is in general straightforward.

Castellini et al. [12] study the uncertainty of the DAS beamformer for a 2D linear array and far-field noise propagation
where the source locations are parameterized by angles ranging from 0 to p rather than being parameterized by 3D
locations. Moreover, the analysis provided is not targeted directly for aeroacoustic applications and does not consider the
uncertainties in the CSM, calibration or integrated DAS sound pressure levels (SPL). In this paper, we specifically analyze
the uncertainty of the DAS beamformer as implemented in aeroacoustic measurements [1–3,5].

The remainder of this paper is organized as follows. First, the data model assumed throughout the paper is introduced,
and the DAS beamformer and the calibration procedure is outlined. General descriptions of the multivariate uncertainty
analysis as well as the Monte-Carlo uncertainty analysis follow. Next, the equations needed for the application of these two
methods to the DAS beamformer are derived, after which the numerical and experimental results are provided. The
numerical examples start with the Monte-Carlo uncertainty analysis of the calibration procedure. Following this analysis,
the multivariate and Monte-Carlo uncertainty analyses of the DAS beamformer are presented. The paper concludes with
the uncertainty analysis of the integrated DAS levels using experimental data acquired at the University of Florida
Aeroacoustic Flow Facility (UFAFF) [13].

In the following, vectors and matrices are denoted by boldface lowercase and boldface uppercase letters, respectively.
Other mathematical symbols are defined after their first appearances. All sound pressure levels presented in this paper are
in dB re. 20mPa.
2. Beamforming in aeroacoustic measurements

In this section we introduce the traditional data model used in aeroacoustic measurement applications, and describe
the standard DAS beamforming algorithm and the array calibration procedure [2].
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2.1. Data model

Consider the wave field generated by L incoherent monopole acoustic sources where the 3D location of the l th source is
denoted by ð ~xl; ~yl; ~zlÞ for l¼ 1; . . . ; L. The data reduction process for frequency domain beamforming starts with the
computation of the CSM at each frequency of interest. For this purpose, the pressure data recorded at each microphone for
Tacq seconds is divided into v percent overlapping blocks of length H, where 0rvo100. The resulting number of blocks,
B, can be computed as follows:

B¼ 1þ
Tacqfs=H�1

1�v=100

� �
; (1)

where b�c denotes the nearest integer less than or equal to the argument and fs denotes the sampling frequency. Next, the
H-point fast Fourier transform (FFT) of each block is computed (an appropriate spectral window can be applied to the data
before taking the Fourier transforms), where H is a power of 2. This results in a frequency resolution of fs=H. The h th
element of each frequency domain block corresponds to the narrow-band frequency fh = hfs/H, where h¼ 0; . . . ;H=2 and
only the single-sided spectrum is considered.

Consider an M-element microphone array with the m th microphone located at (xm, ym, zm), where m¼ 1; . . . ;M. Let the
frequency of interest be f. Following the spherical wave propagation model [14], the frequency domain pressure data at all
the microphones can be used to obtain the following set of equations [15]:

yðbÞ ¼
XL

l ¼ 1

alslðbÞþeðbÞ; b¼ 1; . . . ;B; (2)

where

yðbÞ ¼

y1ðbÞ

y2ðbÞ

^

yMðbÞ

2
66664

3
77775; al ¼

e�jkrl;1=rl;1

e�jkrl;2=rl;2

^

e�jkrl;M=rl;M

2
66664

3
77775; eðbÞ ¼

e1ðbÞ

e2ðbÞ

^

eMðbÞ

2
66664

3
77775; (3)

ymðbÞ is the frequency domain pressure data of microphone m at block b, al is the steering vector (or the wave propagation

vector) corresponding to the l th monopole source, rl;m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~xl�xmÞ

2
þð ~yl�ymÞ

2
þð~zl�zmÞ

2
q

is the Euclidean distance between

the l th source and the m th microphone, k¼ 2pf=c is the wavenumber, c is the speed of sound in air, sl(b) is the acoustic
waveform of the l th source at block b, and em(b) is the additive contamination noise (due to electronic noise and acoustic
sources other than the L sources considered as well as reflections and scattering) at the m th microphone at block b. Note

that yðbÞ, al and eðbÞ are all complex vectors of size M � 1, and sl(b) is a complex scalar. In addition, yðbÞ and al are known,

whereas sl(b) and eðbÞ are unknown quantities. Note also that the indices l, m and b run from 1 to L, M and B, respectively.

2.2. DAS beamformer

The DAS beamformer basically sums the delayed and weighted versions of each microphone signal in order to reinforce
the signal from the source of interest while suppressing the contribution from other sources and contamination noise. The
delays and weights are designed according to the relative distances between the microphones. In the frequency domain,
this corresponds to applying appropriate phase shifts and weighting factors. Beamforming is usually done independently at
each narrow-band frequency of interest and therefore in the following analysis, we will consider only one particular
frequency f (the same analysis is repeated at all frequencies of interest). The DAS estimate of the l th source is defined as
[1,5]

~slðbÞ ¼
1

M
~aH

l yðbÞ; l¼ 1; . . . ; L; (4)

where

~a l ¼
1

rl;0
½rl;1e�jkrl;1 ; rl;2e�jkrl;2 ; . . . ; rl;Me�jkrl;M �T; (5)

rl;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~xl�xÞ2þð ~yl�yÞ2þð~zl�zÞ2

q
is the distance from the l th scanning point to the array center, x is the x component of the

array center (y and z are defined similarly), and ð�ÞT and ð�ÞH denote the transpose and conjugate transpose of the argument,

respectively. Note that ~a l, which is an M � 1 complex vector that is known, is used to account for the different distances

traveled by the wave before reaching each microphone. The purpose of normalizing ~a l by rl,0 is to match the estimated
signal power to what a single microphone in the center of the array would measure. The underlying assumption behind

DAS is that while rl;0 ~a
H
l al ¼M, rl0 ;0 ~a

H
l0 al is relatively small for l0al, l; l0 ¼ 1; . . . ; L. This assumption is evaluated by analyzing

the so-called point spread function, psf(l), defined as j ~aH
l a0j=M2 for the l th scanning point where a0 denotes the wave
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propagation vector of a source located at the center of the scanning region. The psf is also used to compute the 3-dB
beamwidth (and the resolution) of the array.

Consequently, DAS estimates the power level of the l th source (as measured at the array center) as follows:

Pl ¼
2

o0B

XB

b ¼ 1

j~slðbÞj
2 ¼

1

M2
~aH

l G ~a l; l¼ 1; . . . ; L; (6)

where o0 is the spectral window correction factor and

G¼
2

o0B

XB

b ¼ 1

yðbÞyHðbÞ (7)

is the CSM. (The factor of 2 is due to the use of the single-sided spectrum.) The CSM is an M�M complex symmetric matrix
and hence consists of M2 real-valued distinct components. In general, it is preferable to work with the CSM, G, and Eq. (6)
rather than the frequency domain pressure data, yðbÞ, and Eq. (4) as the CSMs require much less storage space and are more
convenient for analysis.

The number of sources, L, is unknown beforehand and hence L is considered to be the number of scanning points in the
region. In other words, every point of a predefined grid that covers the region of interest is considered as a potential source
whose corresponding sound pressure level at the array center will be estimated.

In general, each of the array microphones do not possess flat frequency response with zero phase, and this is accounted
for via a frequency-dependent M �M diagonal calibration matrix ~D ¼ diagð ~D1; . . . ; ~DMÞ, where ~Dm denotes the complex
correction factor for microphone m. The calibrated DAS data reduction equation then becomes

Pl ¼
1

M2
~aH

l
~DG ~D

H
~a l; l¼ 1; . . . ; L: (8)

Note that if a microphone is known to be problematic, simply placing a 0 in the corresponding diagonal entry of ~D and
changing M to M�1 will prevent it from propagating through the data reduction equation. The next subsection describes
how ~D can be obtained in practice.

2.3. Array calibration

In order for DAS to give accurate source location and strength estimates, the assumed steering vectors have to be close
to the true ones. Errors in microphone locations and temperature (through its effect on the sound speed) can have major
effects on the DAS signal power estimates, especially at relatively high frequencies, since these errors are multiplied by the
wavenumber before propagating through the DAS data reduction equation. This section describes a widely used calibration
procedure introduced by Dougherty [2] to remedy this problem. The calibration setup consists of a speaker that resembles
a point source and is driven with a broadband signal (or a tonal signal where the tone frequency is varied). The speaker is
placed near the model location and a temporary anechoic enclosure is recommended for a hardwall wind tunnel to
minimize source reflections [2]. Array data is collected with no flow and the resulting CSM is analyzed at each frequency to
obtain frequency-dependent complex correction factors for all the microphones.

Theoretically, the measurements in the presence of a single source are modeled as (see Eq. (2))

yðbÞ ¼ acalscalðbÞ; b¼ 1; . . . ;B; (9)

where acal is the actual steering vector (unknown) corresponding to the location of the calibration speaker, scal(b) is the
calibration speaker waveform (unknown) and the noise term eðbÞ is neglected. According to Eq. (7), the CSM becomes

Gcal ¼ Pcalacala
H
cal; (10)

where Pcal is the signal power of the calibration speaker. Since Gcal is an outer product (and hence rank-1), it has only a
single non-zero eigenvector equal to kcal ¼ acale

jf=JacalJ and a single non-zero eigenvalue equal to vcal ¼ PcalJacalJ
2, where

0rfr2p is an arbitrary phase value and J � J denotes the Euclidean norm. In practice, although the remaining eigenvalues
will not be identically zero, the dominant eigenvalue is expected to be noticeably larger with a good quality speaker that
produces sufficient sound [2]. The measurement of the m th microphone is then scaled by the complex coefficient

~Dm ¼
ðktheoryÞm

ðkcalÞm
; m¼ 1; . . . ;M; (11)

where ð�Þm denotes the m th element of the vector argument, ktheory ¼ atheory=JatheoryJ, and atheory is given by Eq. (3) where
rl;m is replaced by the distance between the calibration speaker and the m th microphone. It is assumed that
JacalJ� JatheoryJ and therefore

ycalibratedðbÞ ¼
~DyðbÞ ¼

JacalJe�jf

JatheoryJ
atheoryscalðbÞ � e�jfatheoryscalðbÞ; b¼ 1; . . . ;B: (12)

The constant phase offset e�jf will disappear when the power levels are considered. The reason for the normalization
JacalJ=JatheoryJ is because only vcal is known in practice and not acal or JacalJ (i.e., there is a scaling ambiguity). An important
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aspect of the calibration is that it will correct the phase mismatch perfectly for the calibration data. As the distance
between the beamforming source (during testing) and the calibration speaker locations increase, the benefit of calibration
is expected to degrade [2].

The calibration procedure described above corrects the frequency response differences between the microphones. An
additional step can be employed where an overall array correction factor is obtained with respect to a reference
microphone that is assumed to be calibrated separately. Note that the dominant eigenvalue of the calibrated CSM, ~DGcal

~D
H

,
is approximately v = PcalM/rc

2, where rc is the distance from the calibration speaker to the array center, and the reference
microphone will measure Pref ¼ Pcal=r2

ref , where rref is the distance from the calibration speaker to the reference
microphone. The overall array correction factor is then given as

Pref
rref

rc

� �2 M

v
: (13)

When all the assumptions mentioned above are met, calibration will provide accurate correction factors for a source
near the calibration speaker location. However, in practice, many sources of uncertainty are present during calibration.
Errors in CSM and reference microphone levels are two such uncertainty sources. In addition, it might be easier to measure
the distance between the calibration speaker and the array than it is to measure the distance between a complex test
model and the array. This will cause uncertainties in the array broadband distance, which is the distance from the array
center to the center of the scanning region, for which calibration cannot account. We will consider these uncertainties in
the numerical examples section. The calibration performance will also degrade when the calibration source is not a perfect
monopole and/or there are reflections in the calibration setup. However, in this paper, we do not consider such modeling
errors and instead focus our attention on the uncertainty of the calibration procedure when the underlying data model is
correct. (Similarly, when evaluating the uncertainty of the DAS beamformer, the data model is assumed to be correct.)
3. Uncertainty analysis

In experimental data analysis, the goal is to estimate one or more quantities of interest using a data reduction equation.
The data reduction equation is in general a function of many input variables, most of which are obtained from some other
measurements themselves. One purpose of uncertainty analysis is to propagate the uncertainties of all the input variables
through the data reduction equation in order to estimate the total effect on the estimation performance. Another purpose
is to understand the dominant sources of uncertainty and how the errors scale [10]. Experimental data analysis should
provide not only the estimates of the quantities of interest but also the uncertainties associated with these estimated
values since without an uncertainty analysis, it is difficult to understand how accurate the results really are.

As mentioned in Section 1, we consider two uncertainty analysis techniques in this paper: (i) multivariate uncertainty
analysis, which is based on a first-order Taylor series expansion and (ii) Monte-Carlo uncertainty analysis, which is based
on assuming distributions for each input variable. We apply both multivariate and Monte-Carlo uncertainty analyses to the
DAS beamformer, whereas we apply Monte-Carlo uncertainty analysis to calibration (due to the complexity of the
nonlinear eigen-decomposition involved in the procedure). The following analyses consider only a single beamforming
location (in particular, the l th one) and should be repeated for every point in the scanning grid, i.e., L times.
3.1. Multivariate uncertainty analysis

The classical uncertainty analysis technique estimates the uncertainty of the output variables by making use of a first-
order Taylor series expansion. The uncertainties of the input variables should be sufficiently small so that the linear
approximation remains valid. The resulting sample standard deviation or the standard uncertainty of a variable, Pl in our
case (see Eq. (8)), is then computed by

gPl
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT 0

t ¼ 1

qPl

qVt

� �2

GVt ;Vt
þ2

XT 0�1

t ¼ 1

XT 0
u ¼ tþ1

qPl

qVt

qPl

qVu
GVt ;Vu

vuut ; (14)

where T 0 is the number of input variables, GVt ;Vt
is the standard uncertainty squared of the t th input variable, qP=qVt is

called the sensitivity coefficient of the t th input variable, and GVt ;Vu
is the sample covariance between the t th and u th

input variables. Note that t and u run from 1 to T 0 and tþ1 to T 0, respectively.
In the DAS data reduction equation, the power estimate Pl is real-valued and the input variables are complex-valued.

However, Eq. (14) is derived for real variables and therefore the complex input variables should be separated into their real
and imaginary components before being propagated through the data reduction equation [16–18]. One important reason
for treating the real and imaginary parts of the input variables separately is because these components can be correlated in
many applications. (Note that the second term in the square root in Eq. (14) accounts for the correlation between such
components.) For the DAS beamformer, since only one real-valued power level is considered at a time, the multivariate and
classical uncertainty analysis methods are similar [18].
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Eq. (14) can also be written in matrix form as follows [16–18]:

gPl
¼

ffiffiffiffiffiffiffiffiffi
JCJT

q
; (15)

where C is the 2T 0 � 2T 0 real-valued and symmetric sample covariance matrix of the real and imaginary parts of all the
input variables, i.e., the variables fRefV1g; . . . ;RefVT 0 g; ImfV1g; . . . ; ImfVT 0 gg with Ref�g and Imf�g denoting the real and
imaginary parts of the argument, respectively, and J is the 1� 2T 0 real-valued Jacobian matrix (a vector in our case) defined
as

J¼
qPl

qRefV1g
; . . . ;

qPl

qRefVT 0 g
;

qPl

qImfV1g
; . . . ;

qPl

qImfVT 0 g

� �
: (16)

Consider a simple example with two real variables, V1 and V2, where V1 and V2 are assumed to be uncorrelated and let
the output variable Pl be a function of V1 and V2. Then Eq. (14) or (15) becomes

gPl
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qPl

qV1

qPl

qV2

� � GV1 ;V1
0

0 GV2 ;V2

" # qPl

qV1

qPl

qV2

2
6664

3
7775

vuuuuuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qPl

qV1

� �2

GV1 ;V1
þ

qPl

qV2

� �2

GV2 ;V2

s
; (17)

where the squared uncertainties of the variables V1 and V2 are scaled by the sensitivity coefficients qPl=qV1 and qPl=qV2

squared, respectively, and summed up to generate the final uncertainty squared.
In general, 95 percent confidence intervals are used when reporting the uncertainty results. In order to obtain the

confidence intervals, gPl
should be multiplied by a coverage factor which is simply taken as 2 in our case assuming

a Gaussian distribution for the univariate output variable [18]. (Note that ðPl�PlÞ=SPl
, where Pl and SPl

are the sample
mean and sample standard deviation of Pl, respectively, follows the t distribution with number of Monte-Carlo trials
minus one degree of freedom. It is recommended that a coverage factor of 2 is used when the degrees of freedom is larger
than 31 [10].)
3.2. Monte-Carlo uncertainty analysis

When the perturbations are relatively large (so that the linear assumption of the multivariate analysis is violated) and/
or the output distributions are non-Gaussian, the multivariate method can no longer yield reliable uncertainty estimates.
In addition, the sensitivity coefficients are often difficult to evaluate in closed-form. Therefore, a Monte-Carlo uncertainty
analysis is preferable. In Monte-Carlo uncertainty analysis, a distribution is assumed for all of the input variables and then
each variable is randomly perturbed using a perturbation value drawn from its uncertainty distribution (note that the
input variables are not necessarily uncorrelated) [10,18]. Next, the perturbed input variables are propagated through the
data reduction equation in order to obtain the perturbed output. This process is repeated until the distribution of
the output variables converge [11]. The resulting distribution is then used to obtain the mean, variance (covariance) and 95
percent confidence intervals for the quantities of interest.
4. Application of uncertainty analysis to the DAS beamformer

In this section we describe how the aforementioned uncertainty analysis techniques can be applied to the DAS data
reduction equation given in Eq. (8). Let

G¼

G11 C12þ jQ 12 . . . C1Mþ jQ 1M

C12�jQ12 G22 . . . C2Mþ jQ 2M

^ ^ & ^

C1M�jQ1M C2M�jQ2M . . . GMM

2
66664

3
77775; (18)

where Cmn ¼ RefGmng and Qmn ¼ ImfGmng, man, m;n¼ 1; . . . ;M. Similarly, let

~D ¼

D1þ jE1 0 . . . 0

0 D2þ jE2 . . . 0

^ ^ & ^

0 0 . . . DMþ jEM

2
66664

3
77775; (19)

where ~Dm ¼Dmþ jEm, Dm ¼ Ref ~Dmg and Em ¼ Imf ~Dmg, m¼ 1; . . . ;M.
The input variables contained in Eq. (8) can be expressed as

V¼ ½VCSM;VCalib;VLocs;VTemp�; (20)
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where

VCSM ¼ ½G11; . . . ;GMM ;C12; . . . ;C1M ;C23; . . . ;CM�1;M ;Q12; . . . ;Q1M ;Q23; . . . ;QM�1;M �; (21)

VCalib ¼ ½D1; . . . ;DM ; E1; . . . ; EM�; (22)

VLocs ¼ ½x1; . . . ; xM ; y1; . . . ; yM ; z1; . . . ; zM�; (23)

and, finally,

VTemp ¼ ½T�: (24)

Table 1 lists the four categories of input variables as considered above.
The Jacobian matrix for Pl is defined as (see Eq. (16))

J¼
qPl

qG11
; . . . ;

qPl

qQM�1;M|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
JCSM

;
qPl

qD1
; . . . ;

qPl

qEM|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
JCalib

;
qPl

qx1
; . . . ;

qPl

qzM|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
JLocs

;
qPl

qT|{z}
JTemp

2
666664

3
777775 (25)

and therefore the 95 percent confidence interval for Pl is given by (see Eq. (15))

2gPl
¼ 2ðJgðCSM;Calib;Locs;TempÞJ

T
Þ
1=2
¼ 2 JCSMgCSMJT

CSMþ JCalibgCalibJT
Calibþ JLocsgLocsJT

Locsþ JTempgTempJT
Temp


 �1=2
; (26)

where gðCSM;Calib;Locs;TempÞ is the sample covariance matrix of V and gCSM is the sample covariance matrix of VCSM (gCalib, gLocs

and gTemp are defined in a similar manner). (It is assumed that the CSM, calibration, microphone location and temperature
errors are independent of each other.)

In order to evaluate Eq. (26), we need to compute the sample covariance matrices of the input variables, gCSM, gCalib,
gLocs, and gTemp, as well as the Jacobian matrices, JCSM, JCalib, JLocs and JTemp. We need the sample covariance matrices also for
the Monte-Carlo analysis, since these will be the covariance matrices of the Gaussian distributions from which the random
perturbations are drawn. The Jacobian matrices for each category of input variables, i.e., the terms in Eq. (25), are derived in
Appendix A. When computing gCSM, we consider the random errors associated with using the finite averaging method in
Eq. (7). The expression for each component of gCSM is given in Table 9.1 of Bendat and Piersol [19] for two microphones
(M=2). We extend this analysis to the case of M microphones, where M can be any number greater than 1, and list our
findings in Table 2. Appendix B provides the details on how the covariances in Table 2 are computed. Note that when
overlapping blocks are used to compute the CSMs, the number of blocks, B, should be replaced by the effective number of
blocks, o1B, in Table 2, where o1 is used to account for the correlation between overlapping blocks. For instance, for a
Hanning window with 50 percent or 75 percent overlap, o1 ¼ 0:947 or 0:520, respectively [19]. The covariance matrices
Table 1
Error sources for the DAS beamformer.

Name Error source No. of variables

VCSM (variables in G) Random averaging error M2

VCalib (variables in C) Calibration errors 2M

VLocs (microphone locations) Distance measurement errors 3M

VTemp (temperature) Temperature measurement errors 1

Table 2
Covariances of the CSM variables (the elements in gCSM).

Variables Covariance

Gmm , Gmm jGmmj
2=B

Gmm , Gnn jGmnj
2=B

Gmm , Cnp ðCmnCmpþQmnQmpÞ=B

Gmm , Qnp ðCmnQmp�QmnCmpÞ=B

Cmn , Cpq ðCmpCnqþQmpQnqþCmqCnpþQmqQnpÞ=ð2BÞ

Cmn , Qpq ðCmpQnqþQmqCnp�QmpCnq�CmqQnpÞ=ð2BÞ

Qmn , Qpq ðCmpCnqþQmpQmq�CmqCnp�QmqQnpÞ=ð2BÞ
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due to calibration and location errors are taken as diagonal matrices with the corresponding uncertainties along the
diagonals.

When perturbing G in the Monte-Carlo uncertainty analysis, a Gaussian random vector, say ~VCSM, with covariance
matrix gCSM as given in Table 2 and a zero mean vector is generated every trial (Appendix C briefly discusses one way of
doing this) to obtain the perturbations of each variable contained in VCSM. The perturbation values are then used to form a
perturbation matrix Gp (by properly indexing the variables) and the perturbed CSM is computed as GþGp. When
perturbing the input variables contained in VCalib, VLocs and VTemp, independent and identically distributed (i.i.d.) Gaussian
random variables with zero mean and given uncertainty values are generated, and these perturbations are added to the
nominal values.

5. Numerical and experimental results

This section presents the uncertainty analysis of the calibration procedure and the DAS beamformer using numerical as
well as experimental data. Both the individual and the cumulative effects of the input parameters are analyzed to
understand the dominant sources of uncertainty.

5.1. Microphone array

The microphone array used in our experiments is the large aperture microphone directional array (LAMDA), which is a
zero redundancy spiral aperture array built on a 1.82 m diameter rigid aluminum plate, that consists of 90 flush-mounted
Panasonic WM-61A electret microphones. LAMDA was designed by the procedures described by Underbrink [20,21] and
was fabricated for use in the UFAFF [13]. As shown in Fig. 1, LAMDA contains two nested spiral arrays: (i) a small aperture
inner array consisting of 45 microphones and (ii) a larger aperture outer array consisting of 63 microphones. We consider
only the outer array in this paper due to its higher resolution at lower frequencies of operation (and refer to it simply as
LAMDA). Fig. 2 shows the psf of LAMDA at 2 kHz alongside with the 3-dB beamwidth of the array versus frequency at a
broadside distance of z = 1.48 m.

5.2. Calibration uncertainty

The uncertainty analysis of the calibration procedure is conducted using Monte-Carlo simulations (a Taylor series based
analysis is omitted due to the complexity of the eigen-decomposition and due to the increased flexibility provided by the
Monte-Carlo method). The input variables that are perturbed include the CSM, the sound pressure level of the reference
microphone, and the individual microphone sensitivities (real-valued and in mV/Pa). The individual microphone
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Fig. 1. The microphone layout of LAMDA. The inner and outer arrays consist of 45 and 63 microphones, respectively, sharing 18 microphones.
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sensitivities and phases are usually obtained from manufacturer specifications or from individual calibrations with respect
to some high quality microphone. We assume that a frequency independent sensitivity value is used for all the
microphones with a nominal value of 30 mV/Pa (which is the sensitivity used with the Panasonic WM-61A microphones at
the UFAFF), and we assume that the nominal phase of each microphone is 03. The signal-to-noise ratio (SNR) is set to 25 dB
in the calibration setup, where SNR is defined as 10 log10ð

PB
b ¼ 1 JacalscalðbÞJ

2
Þ�10 log10ð

PB
b ¼ 1 JeðbÞJ2

Þ. In order to model the
uncertainties in the calibration procedure, we simulate microphone pressure measurements from an ideal monopole
source located at (0, 0, 1.48) m. The array center is located at (0, 0, 0) m (nominally). The sampling frequency fs = 65,536 Hz
and the block length H=4096. All B values shown represent effective number of blocks. The frequency is set at 5 kHz, and
1000 Monte-Carlo trials have been implemented. Due to the observation that the output distributions are Gaussian, 2
times the sample standard deviation is considered as the uncertainty in the plots of this section.
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Fig. 2. (a) The 3-dB beamwidth of LAMDA versus frequency and (b) the psf at 2 kHz. The levels are in normalized dB in (b) the array broadband distance is

z = 1.48 m.
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First, we consider the effects of perturbing the individual microphone sensitivities while keeping the other input
variables at their nominal values. As observed from Fig. 3, there is a one-to-one relationship between the relative
uncertainties in the microphone sensitivities and the magnitude of the calibration factors. In the figures presented in this
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section, the average (over all microphones) uncertainty in the magnitude and phase of the microphone correction factors
are plotted. Note that the averages are taken after finding the uncertainty of each individual microphone. One important
note here is that a higher uncertainty is not necessarily detrimental since the goal of calibration is to correct for such errors.
Therefore, we find it more appropriate to consider the effects of microphone sensitivity and phase errors, temperature
errors and microphone location errors in the following sections of the paper where we analyze the overall DAS uncertainty.

The effect of the number of blocks, B, on the uncertainty of the calibration procedure can be observed from Fig. 4, where
all the other variables are kept at their nominal values. There is approximately a one-to-two ratio in the uncertainties as
expected since the error in the CSM drops with

ffiffiffi
B
p

. Although the uncertainties in the magnitude appears to be large
(10 percent) for a conventional B such as 1000, the final effect on the DAS estimate is within reasonable limits as will be
shown below. For instance, with a nominal sensitivity of 30 mV/Pa, a positive 10 percent perturbation in all the
microphone sensitivities will yield j20 log10ð30=33Þj ¼ 0:83 dB difference in the source levels. We observe that the phase
uncertainty is relatively low even for small B.

Next, we examine the uncertainties in the reference microphone sound pressure levels only in Fig. 5. Such errors might
rise from the imperfect calibrations of the reference microphone. As expected, there is a one-to-one relation between the
calibration uncertainty and the reference microphone level uncertainty. The phase is not affected since the second stage of
calibration is for magnitude correction only.
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Finally, in Fig. 6, where the uncertainties in the microphone sensitivities and reference microphone level are set to
10 percent and B=1000, the uncertainty of calibration with varying frequency is plotted. It is observed that the uncertainty
is independent of frequency. This is because the microphone sensitivity and reference microphone level uncertainties are
assumed to be frequency-independent in our analysis. (Note that in practice, the uncertainties might vary somewhat with
frequency, in which case the calibration uncertainty will also vary with frequency.) In the next section, we will see that
when the microphone locations or the temperature are perturbed, the frequency will be important since these
perturbations will be multiplied by the wavenumber.

Based on the above observations, the accurate calibration of the reference microphone is very important since this will
determine the array power estimates directly. Moreover, it appears that during calibration, it is beneficial to acquire data
for as long as possible. As mentioned above, the uncertainties in calibration due to microphone sensitivity and phase
errors, temperature errors and microphone location errors are better analyzed within the context of beamforming.

5.3. DAS uncertainty

Unless otherwise stated, in all the simulations in this section, a monopole source with 50 dB signal power (power is
defined at the nominal array center) is simulated at (0, 0, 1.48) m where the array center is nominally located at (0, 0, 0) m
as in the calibration case. (Note that the calibration speaker at UFAFF produces approximately 50 dB signal power at the
array center.) One thousand Monte-Carlo trials have been implemented (see Appendix D for an analysis on the number of
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Monte-Carlo iterations used) and the frequency is set at 5 kHz. The SNR is 25 dB. The scanning region is set from �0.50 to
0.50 m with 0.02 m resolution in both the x and y directions. The room temperature is T0 = 293 K and the nominal sound
speed is 343 m/s.

5.3.1. Comparison of the multivariate and Monte-Carlo methods

In this section we show that the multivariate and Monte-Carlo uncertainty analysis of the DAS beamformer yield
consistent results when the perturbations are relatively low and that the two methods differ when the perturbations
become larger. We consider the perturbations in the calibration factors and the microphone locations, and similar
conclusions can be made when the CSM and microphone correction factors are perturbed.

In order to analyze the effects of the calibration uncertainty on the DAS estimates, we perturb ~D (see Eq. (8)) using the
values obtained in Section 5.2 as a guideline. The uncertainties in the real and imaginary components of the calibration
factors can be found by either using a simple Monte-Carlo analysis or using multivariate uncertainty propagation given the
uncertainties in magnitude and phase [18]. The resulting sample covariance matrix from this procedure is then used to
generate (possibly correlated) perturbation values for Dm and Em at each Monte-Carlo iteration, where m¼ 1; . . . ;M. Fig. 7
shows the difference in dB between the true source power, P0, and P0þ2sl, where sl is the sample standard deviation
estimated via each of the two methods at the l th scanning point. The results of the two methods match well and it was
observed that this is the case even for large perturbation values in microphone calibration factors (results not shown).

Next, we consider two perturbation settings for the microphone locations. The microphone locations are perturbed with
i.i.d. Gaussian random variables of standard deviations 1 and 10 mm in Figs. 8(a)–(b) and (c)–(d), respectively. It is
observed that the two uncertainty analysis methods give different results when the perturbations are larger. Note that
1 and 10 mm perturbations translate into relative uncertainties of 0.2 percent and 2.3 percent, respectively, in terms of
microphone to source distances.

As the uncertainties in the input variables increase, the first-order linear approximation with the Taylor series does not
suffice to model the overall uncertainty due to the nonlinearities. To increase the accuracy of this method, more terms need
to be considered in the Taylor series expansion [11]. However, the algebra can quickly become cumbersome for Eq. (8).
Even if the Taylor series expansion involved as many terms as needed, when the resulting distributions are not Gaussian,
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of the references to color in this figure legend, the reader is referred to the web version of this article.)



ARTICLE IN PRESS

T. Yardibi et al. / Journal of Sound and Vibration 329 (2010) 2654–26822668
the standard deviation estimates of the multivariate method cannot be used to obtain 95 percent confidence intervals.
These limitations and some other reasonings provided below make Monte-Carlo analysis a better candidate for analyzing
the DAS beamformer uncertainty.

5.3.2. Monte-Carlo based uncertainty analysis

This section considers the uncertainty of the DAS beamformer using Monte-Carlo simulations. We consider the
uncertainties in microphone sensitivity and phase, microphone location, array broadband distance, temperature and CSM.
In the multivariate uncertainty method, the calibration effects had to be analyzed through ~D. However, in the Monte-Carlo
method, ~D will be estimated from calibration, which is done at each Monte-Carlo iteration using the perturbed inputs, and
directly substituted in the data reduction equation. In the Monte-Carlo method, we estimate the distribution of the DAS
power estimates at each scanning point and then obtain the 95 percent confidence intervals and mean values. Then, these
values are converted into dB. The reason for showing 95 percent confidence intervals instead of sample standard deviations
is that the resulting distributions are in general asymmetrical about their mean values. For instance, for a scanning point
where the DAS estimate is relatively low, since the power estimate is constrained to be positive, 72 times the standard
deviation cannot be used to obtain the confidence intervals when the mean is less than twice the standard deviation. The
95 percent confidence intervals are therefore best estimated from the distributions and standard deviations might be
insufficient in modeling the uncertainties.

First, we investigate the microphone location uncertainty in detail while keeping the other input variables at their
nominal values. Figs. 9 and 10 show the 95 percent confidence intervals at each scanning point when the x, y and z

components of the microphone locations are perturbed using i.i.d. Gaussian random variables with zero means and
standard deviations of sLocs ¼ 10 mm and sLocs ¼ 1 mm, respectively. These perturbation values can be normalized by the
wavelength (at 5 kHz) to obtain dimensionless values of 0.146 (for 10 mm) and 0.015 (for 1 mm). Note that calibration is
not applied in these plots. The 3D plot in Fig. 9(a) shows the mean, and the upper and lower limits of the 95 percent
confidence intervals at each scanning location. The true source location and power are indicated with the dashed line and
the dot at its tip, respectively. The 2D plot in Fig. 9(b), on the other hand, shows two slices from the 3D plot taken at x = 0
and 0.06 m. (The 3D plot is omitted in the rest of the examples since the 2D profiles appear to be more informative.)
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Note that in the 2D plots, the confidence intervals in the region from y= 0.2 to 0.5 m are omitted since they resemble
closely the confidence intervals in the region from y=�0.5 to 0.2 m. Instead, a zoomed in view of the main beam, which is
of relatively more interest, is provided (the nominal curve is omitted in the zoomed in plots). One important observation
that can be made from Fig. 9 is that the power estimates are biased downwards with respect to the nominal value.
Appendix E provides an explanation for this rather non-intuitive phenomenon. To further elaborate on the bias issue, we
show the peak location of the DAS beamforming image at each Monte-Carlo trial when sLocs ¼ 10 mm together with the
histogram of the peak location in Figs. 11(a) and (b). Note that the DAS peak location exhibits a discrete pattern due to the
finite scanning resolution which is set to 5 mm in Fig. 11(a). The mean of the peak locations over all the trials is indicated
with the empty circle. It is observed that the DAS peak occurs either at the true source location or in its vicinity and that the
mean location of the peaks coincides with the true source location. However, even when the peak appears at the true
source location, the estimated power value is less than the nominal value (as discussed in Appendix E). This can also be
observed from Fig. 11(c) where slices from the beamforming map at x = 0 m from four different samples are shown
together with the nominal value. We observe that there are large fluctuations at almost every scanning point due to the
location errors, consistent with the plots in Fig. 9.

As observed above, microphone location errors can cause significant problems if not accounted for. Since calibration is
specifically designed for such errors, we expect it to improve the results. In Fig. 12, we again show the 95 percent
confidence intervals at each scanning point but now with calibration applied. It is observed that calibration greatly reduces
the variations of the DAS power estimates due to location errors. Fig. 11(d) shows that the power estimates from trial-to-
trial now line up nicely as opposed to Fig. 11(c). When finding the calibration factors, we assumed that all the input
variables except the microphone locations are at their nominal values.

To analyze the performance of the calibration in the presence of sources at different locations than the calibration
speaker, we consider a scenario where two monopole sources of equal strength (50 dB) are placed at (0, 0, 1.48) m and
(0, �0.20, 1.48) m. In Figs. 13 and 14, the 95 percent confidence intervals are shown when calibration is not applied and
when calibration is applied, respectively. Similar observations to the single source case can be made. It seems that although
the second source is not at the same location as the calibration speaker, calibration still helps to reduce the uncertainties.
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Fig. 14. Two sources are placed at (0, 0, 1.48) m and (0, �0.20, 1.48) m with equal strengths of 50 dB. Profile plots of the mean and the 95 percent

confidence intervals when microphone locations are perturbed with a standard deviation of 10 mm and calibration is applied. The black solid line and the

blue dashed line indicate the mean values and the nominal values, respectively. A zoomed in view of the main beam region is also provided. The nominal

and the mean values are indistinguishable at most y values. Frequency is 5 kHz. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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The application of calibration thus seems essential when we anticipate errors in our location measurements. Even
though the location errors of the microphones on the array plane, i.e., in the x and y directions, can be measured very
accurately, the non-uniformity of the array surface can result in unknown location errors. In the examples considered
above, we assumed that the temperature was the same in the calibration and test data. However, in the presence of flow,
the non-uniformity of temperature in the test section will cause sound speed differences in the calibration and test cases.
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Fig. 15. The 95 percent confidence intervals of the DAS power estimates when the array broadband distance is perturbed. Two slices from the

beamforming image at x = 0 and 6 cm are considered. The relative uncertainty in array broadband distance is (a) 2.5 percent, and (b) 5 percent. The black
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provided. The nominal and the mean values are indistinguishable at some y values. Frequency is 5 kHz. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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Furthermore, in practice, there is a certain uncertainty associated with the array broadband distance, especially with
complex test models.

To represent the uncertainty in the model to array distance, we perturb the array broadband distance together with the
array microphone locations, and apply calibration as before. Figs. 15(a) and (b) show the 95 percent confidence intervals
when the relative uncertainties in the array broadband distance are set to 2.5 percent and 5 percent, respectively. Note that
in our case, these correspond to net uncertainties of 0.04 and 0.07 m. Keeping in mind that the nominal broadband distance
of the source is 1.48 m, such errors might be realizable in practice, especially when testing models with complex
geometries. We also analyze the deterministic error in the estimated power levels when the array broadband distance is
varied. Fig. 16 shows the power estimated at (x, y) = (0, 0) m when the array broadband distance is varied from 1.1 to 1.9 m
with increments of 0.5 mm. It is observed that the estimated source levels exhibit a concave behavior with a peak at the
true source height.

In Fig. 17, we analyze the 95 percent confidence intervals when the number of blocks B used in computing the CSM is
varied and the other variables are kept at their nominal values. The calibration CSM is also perturbed assuming that the
number of blocks used for the calibration was 1000. We observe that B=1000 case reduces the uncertainty by about 0.5 dB
compared to the B=200 case.

Figs. 18 and 19 show the 95 percent confidence intervals when the individual microphone sensitivities and phases are
perturbed. It is assumed that the microphone sensitivities and phase values remain the same during calibration and
testing. We observe that the uncertainties are somewhat large for 15 percent relative uncertainty in the microphone
sensitivities and that when the calibration input variables are at their nominal values, the phase errors are corrected
accurately.

Fig. 20 shows the 95 percent confidence intervals when the temperature is perturbed. In practice, the errors in
temperature will be negligible during calibration due to the absence of flow. However, during model testing, the
temperature uncertainty could be significant. Here we consider 0:1 3C (Fig. 20(a)) and 3 3C (Fig. 20(b)) uncertainty in
temperature during testing and 0:1 3C uncertainty during calibration. It appears that the beamforming procedure is quite
insensitive to temperature uncertainties provided that calibration is applied. Note that a 3 3C uncertainty in temperature
will cause a relative perturbation of 0.5 percent in sound speed. We emphasize that the temperature uncertainty has only
been considered through its effect on the sound speed. In practice, microphone transfer functions as well as microphone
locations (due to the expansion/contraction of the array plate) could be affected by temperature, resulting in larger
uncertainties.

Finally, in Fig. 21 we consider the overall uncertainty when the microphone location uncertainties are 10 mm, relative
array broadband distance uncertainty is 5 percent, temperature uncertainty is 3 3C for testing and 0:1 3C for calibration,
CSM uncertainty is calculated using 1000 blocks for both calibration and testing, and microphone sensitivity and phase
uncertainties are 15 percent and 103, respectively. It is observed that the 95 percent confidence interval at the source
location is around [�0.84, 0.45] dB of the mean value.

5.3.3. Monte-Carlo based uncertainty analysis of experimental data

The Monte-Carlo method is now demonstrated on experimental data taken at the UFAFF using LAMDA with the purpose
of investigating the uncertainty in the integrated DAS levels. The integrated power level is computed by summing the DAS
power estimates inside the integration region (which is within the scanning region) and normalizing the result by a scaling
factor obtained by summing the psf values (see Section 2.2) over the same integration region. Stated mathematically, the
1.1 1.2 1.3 1.4 1.48 1.6 1.7 1.8 1.9
45

45.5

46

46.5

47

47.5

48

48.5

49

49.5

50

P
ow

er
 (d

B
)

z, m

Fig. 16. The power estimated at (x, y) = (0, 0) m when the array broadband distance (in particular, z) is varied from 1.1 to 1.9 m with increments of

0.5 mm. The true source distance to array is 1.48 m and the true source power is 50 dB. Frequency is 5 kHz.
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Fig. 17. The 95 percent confidence intervals of the DAS power estimates when the CSM is perturbed. Two slices from the beamforming image at x = 0 and

6 cm are considered. Number of blocks are (a) B=200 and (b) B=1000. The black solid line and the blue dashed line indicate the mean values and the

nominal values, respectively. A zoomed in view of the main beam region is also provided. The nominal and the mean values are indistinguishable at most

y values. Frequency is 5 kHz.(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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integrated DAS level is defined as
P

l2LPl=
P

l2LpsfðlÞ, where L is a set containing the indices of the scanning grid points
within the integration region [22,23]. In the Monte-Carlo trials, the normalization factor is calculated at each iteration with
the perturbed values.

The first test setup consists of a single speaker placed at (0, 0, 1.48) m similar to the scenario considered earlier with
simulations. The data analysis parameters are as follows: a Hanning window with 75 percent overlap has been applied to
blocks of size 4096 samples, the sampling frequency is 65,536 Hz and the data acquisition time is 15 s resulting in 498
effective blocks and a frequency resolution of 16 Hz. The scanning region extends from �0.50 to 0.50 m with a resolution of
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Fig. 18. The 95 percent confidence intervals of the DAS power estimates when the individual microphone sensitivities are perturbed. Two slices from the

beamforming image at x = 0 and 6 cm are considered. The relative input uncertainties are (a) 5 percent, and (b) 15 percent. The black solid line and the

blue dashed line indicate the mean values and the nominal values, respectively. A zoomed in view of the main beam region is also provided. The nominal

and the mean values are indistinguishable at most y values. Frequency is 5 kHz. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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0.02 m in both the x and y directions. The beamforming map at 2 kHz is shown in Fig. 22(a). The resulting 95 percent
confidence intervals of the integrated DAS levels versus frequency have been plotted in Fig. 22(b) for a frequency range of
1 to 10 kHz. In this figure, the uncertainties for the CSM are calculated for an effective number of blocks of 498 for testing
and 1000 for calibration, the uncertainties for individual microphone sensitivities and phases are set to 15 percent and 151,
respectively, the temperature uncertainty is set to 1 percent for testing and 0.1 percent for calibration, the microphone
location uncertainties in all the x, y and z directions are set to 10 mm, and the array broadband distance uncertainty is set
to 2.5 percent (10 mm standard deviation in microphone locations corresponds to dimensionless perturbations of 0.029
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Fig. 19. The 95 percent confidence intervals of the DAS power estimates when the individual microphone phases are perturbed. Two slices from the

beamforming image at x = 0 and 6 cm are considered. The relative input uncertainties are (a) 13 , and (b) 103 . The black solid line and the blue dashed line

indicate the mean values and the nominal values, respectively. A zoomed in view of the main beam region is also provided. The nominal and the mean

values are indistinguishable at most y values. Frequency is 5 kHz. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
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and 0.292 at 1 and 10 kHz, respectively, when normalized by the wavelength). The uncertainties are defined with respect
to the assumed nominal values and with experimental data, the ‘‘nominal’’ values might not be identical to the unknown
true values. It is observed that the estimated levels are within 70:5 dB of the mean value.

As a final case, we analyze the uncertainty in the integrated DAS levels of the NACA 63-215 Mod B airfoil [24,13].
(The details of this aeroacoustic experiment are given by Bahr et al. [13] and hence omitted here due to space concerns.)
The beamforming image of the airfoil at 2.5 kHz is shown in Fig. 23(a), where two locations with dominant noise can be
identified. Note that in the beamforming map, the scanning region extends from �0.5 to 0.5 m in the x direction and from
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Fig. 20. The 95 percent confidence intervals of the DAS power estimates when the temperature is perturbed. Two slices from the beamforming image at

x = 0 and 6 cm are considered. The relative input uncertainties are (a) 0:1 3C and (b) 3 3C. The black solid line and the blue dashed line indicate the mean

values and the nominal values, respectively. A zoomed in view of the main beam region is also provided. The nominal and the mean values are

indistinguishable at most y values. Frequency is 5 kHz. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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�0.6 to 0.6 m in the y direction with a common resolution of 0.02 m, and the model is at a broadband distance of 1.30 m
with respect to the array plane. The Mach number is 0.17. Due to the presence of flow during the airfoil testing, diagonal
removal is applied, i.e., the diagonal of G is removed in the DAS data reduction equation [1,2]. Moreover, shear layer
correction has also been employed [1,25]. The data acquisition time was 5 s, sampling frequency was 65,536 Hz and the
block length was 2048 samples (frequency resolution of 32 Hz). A Hanning window with 75 percent overlap has been
employed leading to 331 effective averages [13]. The resulting uncertainties in the integrated levels are shown in Fig. 23(b)
where the input uncertainties are set to the same values used in the previous example (10 mm standard deviation in
microphone locations corresponds to dimensionless perturbations of 0.022 and 0.073 at 0.75 and 2.5 kHz, respectively,
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when normalized by the wavelength). We observe that the estimated levels are within 71 dB of the mean values over a
frequency range of 0.75–2.5 kHz. (Note that the uncertainties due to shear layer corrections have not been considered.)
6. Conclusions

This paper presented the Monte-Carlo uncertainty analysis of the array calibration technique and the multivariate and
Monte-Carlo uncertainty analyses of the DAS beamformer. It was shown that the DAS uncertainty obtained from these two
methods are similar when the perturbations are relatively small. However, when the component uncertainties are
relatively large, the two methods differ due to the breakdown of the first-order assumption of the multivariate technique.
It was also shown that the Monte-Carlo method is simpler to implement and provides more flexibility in terms of analyzing
the DAS data reduction equation along with calibration. However, the Monte-Carlo method requires approximately 4 times
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more computation than the analytic multivariate method for 1000 iterations (and more if the iteration number is increased
even further) with the scanning resolutions implemented in this paper.

Using simulations, the calibration procedure was shown to be essential when errors are expected in microphone
frequency responses, microphone locations and/or temperature measurements. With calibration, the DAS beamformer was
shown to be affected mostly by the uncertainty in the array broadband distance followed by the uncertainties in the CSM
and individual microphone sensitivities. In addition to simulations, the uncertainty in the integrated DAS levels of
experimental data was also considered. In particular, the 95 percent confidence intervals were found to be around 70:5 dB
over a frequency range of 1–10 kHz for a single monopole source also used for calibration, whereas with the NACA 63-215
Mod B airfoil model, the 95 percent confidence intervals of the integrated levels were found to be around 71 dB over a
frequency range of 0.75–2.5 kHz. It should be noted that if the conditions of calibration and testing are significantly
different (for instance, if the microphone transfer functions change from calibration to testing), the calibration procedure
will be less effective. Therefore, the uncertainties and the confidence intervals provided in this paper could be considered
as lower bounds on the errors that will be encountered in practice.
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Appendix A. Jacobian matrix

This appendix derives the closed-form expressions for the Jacobian matrices with respect to all of the input variables in
V (see Section 4). Note that the Jacobians are evaluated using the nominal values of the input variables.

A.1. Jacobian matrix for the CSM

The derivatives of Pl with respect to the CSM elements are

qPl

qGmm
¼

1

M2
j ~Dmj

2 rl;m

rl;0

� �2

; m¼ 1; . . . ;M; (A.1)

qPl

qCmn
¼

2

M2

rl;mrl;n

r2
l;0

Ref ~Dm
~D
�

nejkðrl;m�rl;nÞg; m;n¼ 1; . . . ;M; man; (A.2)

and

qPl

qQmn
¼�

2

M2

rl;mrl;n

r2
l;0

Imf ~Dm
~D
�

nejkðrl;m�rl;nÞg; m;n¼ 1; . . . ;M; man; (A.3)

where ð�Þ� denotes the complex conjugate of the argument.
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A.2. Jacobian matrix for the calibration factors

The derivative of Pl with respect to Dm can be written as

qPl

qDm
¼

2

M2r2
l;0

r2
l;mDmGmmþRe rl;me�jkrl;m

XM
p ¼ 1;pam

rl;pejkrl;p ~DpGpm

( ) !
; m¼ 1; . . . ;M: (A.4)

The derivative with respect to Em is obtained by replacing Dm by Em and the real component by the imaginary component
of the argument in Eq. (A.4).

A.3. Jacobian matrix for microphone locations

The derivative of Pl with respect to xm is given by

qPl

qxm
¼

1

M2
j ~Dmj

2 q
qxm

r2
l;m

r2
l;0

 !
þ2 Re

XM
p ¼ 1;pam

~D
�

p
~Dmrl;pe�jkrl;p

q
qxm

1

r2
l;0

rl;mejkrl;m

 !( )" #
; (A.5)

where

q
qxm
ðrl;mejkrl;m Þ ¼�ð ~xl�xmÞð1=rl;mþ jkÞejkrl;m ; (A.6)

q
qxm

1

r2
l;0

 !
¼

2 xl�xð Þ

Mr4
l;0

and
qr2

l;m

qxm
¼�2ð ~xl�xmÞ; (A.7)

for m¼ 1; . . . ;M. A closed-form expression can be obtained for Eq. (A.5) by using the product rule for differentiation
together with Eqs. (A.6) and (A.7). Similar expressions can be obtained for ym and zm by replacing ~xl with ~yl or ~zl and xm

with ym or zm.

A.4. Jacobian matrix for temperature

The derivative of Pl with respect to temperature can be calculated using

qPl

qT
¼

qPl

qk

qk

qT
; (A.8)

where

qPl

qk
¼�

2

M2r2
l;0

Im
XM�1

m ¼ 1

XM
n ¼ mþ1

~Dm
~D
�

nrl;mrl;nðrl;m�rl;nÞe
jkðrl;m�rl;nÞGmn

( )
; (A.9)

qk

qT
¼�

k

2T0
; (A.10)

and T0 is the room temperature.
Note that it is difficult to comment on the scaling of the sensitivity coefficients due to the complexity of the

corresponding expressions and the high correlation between the input variables. For instance, although it appears that the
sensitivity coefficients of the CSM decrease by M2, the contributions from all the terms (JCSMgCSMJT

CSM in Eq. (26)) will also
scale with M2 and hence the effect of M will be canceled out.

Appendix B. Covariance matrix of the CSM

This appendix derives the covariances between all the real and imaginary components of the M �M complex
symmetric CSM, G (see Section 4).

Let the pressures measured at microphones m and n be denoted as pm
0 ðtÞ and pn

0 ðtÞ, respectively, where t denotes time.
Note that unless otherwise stated, the indices m and n both run from 1 to M. The finite Fourier transforms of pm

0 ðtÞ and
pn
0 ðtÞ are then defined as [19]

ymðf Þ ¼

Z T

0
pm
0 ðtÞe�j2pft dt¼ ym;Rðf Þ�jym;Iðf Þ

and

ynðf Þ ¼

Z T

0
pn
0 ðtÞe�j2pft dt¼ yn;Rðf Þ�jyn;Iðf Þ; (B.1)
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where ym, R(f) and ym, I(f) denote the real and imaginary parts of ym(f), respectively, (similarly for yn(f)) and T=H/fs is the
finite block length in time. The raw estimate for the cross-spectrum is then given by [19]

GmnðfhÞ ¼
2

T
ymðfhÞy

�
nðfhÞ; h¼ 0;1; . . . ;H=2: (B.2)

Note that when pm
0 ðtÞ and pn

0 ðtÞ are assumed to be normally distributed with zero mean, so will be ym(f) and yn(f). The
frequency variable f is omitted in the rest for notational simplicity. From Eqs. (B.1) and (B.2) we obtain [19]

Gmm ¼
2

T
ðy2

m;Rþy2
m;IÞ; Gnn ¼

2

T
ðy2

n;Rþy2
n;IÞ; (B.3)

and

Cmn ¼
2

T
ðym;Ryn;Rþym;Iyn;IÞ; Qmn ¼

2

T
ðym;Ryn;I�ym;Iyn;RÞ: (B.4)

Moreover, from Eq. (B.1) evaluated at f ¼ f0; f1; . . . ; fH=2; or equivalently, at f ¼ 0;1=T; . . . ;H=ð2TÞ; we obtain [19]

E½ym;Rym;I� ¼ E½yn;Ryn;I� ¼ 0; E½y2
m;R� ¼ E½y2

m;I� ¼
T

4
Gmm; E½y2

n;R� ¼ E½y2
n;I� ¼

T

4
Gnn (B.5)

and

E½ym;Ryn;R� ¼ E½ym;Iyn;I� ¼
T

4
Cmn; E½ym;Ryn;I� ¼ �E½ym;Iyn;R� ¼

T

4
Qmn: (B.6)

In order to compute the covariance between Cmn and Qpq, we need to find

E½CmnQpq� ¼
4

T2
E½ðym;Ryn;Rþym;Iyn;IÞðyp;Ryq;I�yp;Iyq;RÞ�

¼
4

T2
ðE½ym;Ryn;Ryp;Ryq;I��E½ym;Ryn;Ryp;Iyq;R�þE½ym;Iyn;Iyp;Ryq;I��E½ym;Iyn;Iyp;Iyq;R�Þ

¼ CmnQpqþ
1

2
ðCmpQnqþQmqCnp�QmpCnq�CmqQnpÞ; (B.7)

where we have used the fact that for any four Gaussian variables a1, a2, a3, a4 with zero mean values [19]

E½a1; a2; a3; a4� ¼ E½a1; a2�E½a3; a4�þE½a1; a3�E½a2; a4�þE½a1; a4�E½a2; a3�: (B.8)

Since E[Gmm] = Gmm, E[Gnn] = Gnn, E[Cmn] = Cmn and E[Qpq] = Qpq (see Eqs. (B.3)–(B.6)), it follows that

CovðCmn;QpqÞ ¼
1
2ðCmpQnqþQmqCnp�QmpCnq�CmqQnpÞ; m;n;p; q¼ 1; . . . ;M: (B.9)

The other covariance formulas listed in Table 2 can be obtained in a similar manner.

Appendix C. Generating Gaussian random variables with a given covariance matrix

This appendix provides a short description on how Gaussian random variables with a given covariance matrix can be
generated (see Section 4).

To generate Gaussian random vectors with zero mean and covariance matrix R, we first generate an i.i.d. Gaussian
random vector with zero mean and unit variance. Denoting this random vector with g, Kg will yield a Gaussian random
vector with covariance matrix R and zero mean provided that KKH

¼R. K can be obtained from the Cholesky
decomposition of R [26].

Let the number of Monte-Carlo trials be denoted by Ntrial. We recommended that Ntrial perturbation vectors be
generated simultaneously before implementing the Monte-Carlo analysis rather than generating a single perturbation
vector at each Monte-Carlo iteration (i.e., Ntrial times) since calculating K can be a time-consuming process.

Appendix D. Number of Monte-Carlo iterations

This appendix analyzes the effect of the number of Monte-Carlo iterations on the uncertainty levels. First, consider the
example described in Section 5.3.2, where the x, y and z components of the microphone locations were perturbed using
i.i.d. Gaussian random variables with zero means and standard deviations of sLocs ¼ 10 mm (see Fig. 9). Fig. 24 shows the
uncertainty profile plots obtained by using 1000 (see Fig. 9) and 100,000 Monte-Carlo iterations superimposed. It is
observed that the two uncertainty plots are indistinguishable at almost all of the y values with the maximum deviation
being less than 0.08 dB, which is practically insignificant. Note that for this particular example, the computation times on a
personal computer with 2.53 GHz processor speed and 3 GB random access memory were approximately 6 min and 10 h,
respectively, for 1000 and 100,000 Monte-Carlo iterations. Using 100,000 Monte-Carlo iterations therefore seems both
unnecessary and computationally expensive, especially when integrated DAS level uncertainties are desirable as in our
examples. Table 3 lists the mean value, and the lower and upper bounds of the 95 percent confidence interval for the grid
point located at the center of the scanning region, i.e., at (x, y) = (0, 0) m, obtained by using 1000 and 100,000 Monte-Carlo
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Fig. 24. Profile plots of the mean and the 95 percent confidence intervals when microphone locations are perturbed with a standard deviation of 10 mm.

The results obtained by using 1000 and 100,000 Monte-Carlo iterations are shown superimposed. The two plots are indistinguishable at most of the

y values.

Table 3
95 percent confidence intervals (dB) obtained by using 1000 and 100,000 Monte-Carlo iterations in 10 sets of trials.

Trial Lower bound Mean value Upper bound

1000 100,000 1000 100,000 1000 100,000

#1 44.98 44.98 46.48 46.48 47.57 47.57

#2 44.97 44.98 46.48 46.48 47.57 47.57

#3 44.98 44.98 46.48 46.48 47.57 47.57

#4 44.98 44.98 46.48 46.48 47.58 47.57

#5 44.98 44.98 46.48 46.48 47.57 47.57

#6 44.98 44.98 46.47 46.48 47.57 47.57

#7 44.97 44.98 46.48 46.48 47.57 47.57

#8 44.98 44.98 46.48 46.48 47.57 47.57

#9 44.98 44.98 46.48 46.48 47.56 47.57

#10 44.98 44.98 46.48 46.48 47.57 47.57

T. Yardibi et al. / Journal of Sound and Vibration 329 (2010) 2654–26822680
iterations. In Table 3, 10 independent sets of trials (with each trial consisting of 1000 or 100,000 Monte-Carlo iterations to
compute the confidence interval and mean) have been conducted and only two decimal points are considered as smaller
deviations in dB are practically irrelevant. It is again observed that using 1000 Monte-Carlo iterations suffices.

Finally, consider the uncertainty in the DAS integrated levels, in particular the single speaker experimental setup
described in Section 5.3.3 (see Fig. 22). In this case, 1000 and 10,000 Monte-Carlo iterations are considered due to the
increased computation time. The uncertainty levels in the frequency range from 1 to 10 kHz are shown in Fig. 25. It is
observed that using 1000 or 10,000 Monte-Carlo iterations yields nearly identical results.
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Appendix E. More on microphone location errors

This appendix elaborates on the bias observed in the DAS power estimates when the microphone locations are
perturbed (see Section 5.3.2).

Assume that there is only a single source present and that there is no contaminating noise. Moreover assume that only
the microphone locations are perturbed. Consequently (see Eq. (7)),

G¼ P0aaH; (E.1)

where P0 is the power of the source and a is the steering vector corresponding to the source, i.e.,
a¼ ½e�jkr0;1=r0;1; . . . ; e

�jkr0;M=r0;M �
T, with r0,m denoting the distance between the m th microphone and the source location.

When the microphone locations are perturbed, the distance between the m th microphone and the source location
becomes r0;mþdrm, where drm denotes the perturbation and it can be negative or positive. The perturbed DAS estimate of
the source power is then (by omitting calibration errors in Eq. (8))

P̂0 ¼
1

M2
~aH

p G ~ap; (E.2)

where ~ap is the perturbed version of Eq. (5) and is defined as

~ap ¼
1

r0;0
½ðr0;1þdr1Þe

�jkðr0;1þdr1Þ; . . . ; ðr0;MþdrMÞe
�jkðr0;M þdrM Þ�T: (E.3)

Note that r0,0 (the distance between the source and the array center) is not going to be affected much by the perturbations
since the array center will remain approximately at the same location when the microphone locations are perturbed with
i.i.d. Gaussian random variables with zero mean values. Therefore,

P̂0 ¼
1

M

XM
m ¼ 1

1þ
drm

r0;m

� �
ejkdrm

�����
�����
2

~P0; (E.4)

where ~P0 ¼ P0=r2
0;0 is the source power at the array center. Note that when the microphone locations are not perturbed,

drm ¼ 0, m¼ 1; . . . ;M, and hence P̂0 ¼
~P0. However, when drma0, since f is relatively large and the perturbations appear on

the phase terms, even small perturbations can affect the overall result. Using the Cauchy–Schwarz inequality gives [27]

1

M

XM
m ¼ 1

1þ
drm

r0;m

� �
ejkdrm

�����
�����
2

r1þ
1

M

XM
m ¼ 1

2drm

r0;m
þ

1

M

XM
m ¼ 1

drm

r0;m

� �2

� 1;

where since drm5r0;m, the second and third terms have been neglected in the last equality. So, we can approximately claim
that P̂0r ~P0. We plot ð1þdrm=r0;mÞe

jkdrm , m¼ 1; . . . ;M, for a single Monte-Carlo trial in Fig. 26, where the standard deviation
of the perturbation drm is chosen to be 1 and 10 mm. We observe that as fdrm gets larger, the phase kdrm ¼ 2pf=cdrm starts
to deviate from the nominal value of 03, whereas the amplitude is always around 1 regardless of f since ð1þdrm=r0;mÞ � 1.
Therefore, we conclude that for relatively large fdr0;m, the average of the samples (marked with a cross in the plots) will
have amplitude much smaller than 1 which means that the average squared, i.e., P̂0= ~P0, will be even smaller.

Another rather simple argument is that since the non-perturbed ~a l are designed so as to maximize the beamforming
output for the l th scanning point, when the locations are perturbed, the mismatch between ~al and al will result in equal or
smaller power estimates than the true power. Therefore, this will create a negative bias in the power estimates.
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Fig. 26. The polar plot of ð1þdrm=r0;mÞe
jkdrm , m¼ 1; . . . ;M, at one Monte-Carlo trial, where the standard deviation of the perturbation drm is chosen to be

(a) 1 mm and (b) 10 mm. f=5 kHz and z=1.48 m as usual. The cross-marks indicate the averages of the M values in each plot.

T. Yardibi et al. / Journal of Sound and Vibration 329 (2010) 2654–26822682
References

[1] W.M. Humphreys, T.F. Brooks, W.W. Hunter, K.R. Meadows, Design and use of microphone directional arrays for aeroacoustic measurements, 4th
AIAA/CEAS Aeroacoustics Conference, AIAA-98-0471, Reno, NV, 1998.

[2] R.P. Dougherty, in: T.J. Mueller (Ed.), Beamforming in Acoustic Testing, Aeroacoustic Measurements, Springer, Berlin, 2002, pp. 63–97.
[3] K.R. Meadows, T.F. Brooks, W.M. Humphreys Jr., W.W. Hunter, C.H. Gerhold, Aeroacoustic measurements of a wing-flap configuration, 3rd AIAA/CEAS

Aeroacoustics Conference, AIAA Paper 97-1595, Atlanta, GA, 1997.
[4] R.P. Dougherty, Advanced time-domain beamforming techniques, 10th AIAA/CEAS Aeroacoustics Conference, AIAA-2004-2955, Manchester, UK, 2004.
[5] T.F. Brooks, W.M. Humphreys, A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays,

10th AIAA/CEAS Aeroacoustics Conference, AIAA-2004-2954, Manchester, UK, 2004.
[6] R.P. Dougherty, Extensions of DAMAS and benefits and limitations of deconvolution in beamforming, 11th AIAA/CEAS Aeroacoustics Conference, AIAA-

2005-2961, Monterey, CA, 2005.
[7] T. Yardibi, J. Li, P. Stoica, L.N. Cattafesta, Sparsity constrained deconvolution approaches for acoustic source mapping, 14th AIAA/CEAS Aeroacoustics

Conference, AIAA-2008-2957, British Columbia, Canada, 2008.
[8] T. Yardibi, J. Li, P. Stoica, L.N. Cattafesta, Sparsity constrained deconvolution approaches for acoustic source mapping, The Journal of the Acoustical

Society of America 123 (5) (2008) 2631–2642.
[9] P. Sijtsma, Clean based on spatial source coherence, International Journal of Aeroacoustics 6 (4) (2007) 357–374.

[10] H.W. Coleman, W.G. Steele, Experimentation and Uncertainty Analysis for Engineers, Wiley, NY, 1998.
[11] T. Schultz, M. Sheplak, L.N. Cattafesta, Uncertainty analysis of the two-microphone method, Journal of Sound and Vibration 304 (1–2) (2007) 91–109.
[12] P. Castellini, M. Martarelli, Acoustic beamforming: analysis of uncertainty and metrological performances, Mechanical Systems and Signal Processing

22 (3) (2008) 672–692.
[13] C. Bahr, T. Yardibi, F. Liu, L.N. Cattafesta, An analysis of different measurement techniques for airfoil trailing edge noise, 14th AIAA/CEAS Aeroacoustics

Conference, AIAA-2008-2957, British Columbia, Canada, 2008.
[14] D.T. Blackstock, Fundamentals of Physical Acoustics, Wiley, New York, NY, 2000.
[15] D.H. Johnson, D.E. Dudgeon, Array Signal Processing: Concepts and Techniques, Prentice-Hall, Englewood Cliffs, NJ, 1993.
[16] B.D. Hall, Calculating measurement uncertainty for complex-valued quantities, Measurement Science and Technology 14 (2003) 368–375.
[17] B.D. Hall, On the propagation of uncertainty in complex-valued quantities, Metrologia 41 (2004) 173–177.
[18] T. Schultz, M. Sheplak, L.N. Cattafesta, Application of multivariate uncertainty analysis to frequency response function estimates, Journal of Sound and

Vibration 305 (1–2) (2007) 116–133.
[19] J.S. Bendat, A.G. Piersol, Random Data: Analysis and Measurement Procedures, Wiley, New York, 2000.
[20] J.R. Underbrink, Practical Considerations in Array Design for Passive Broad-Band Source Mapping Applications, The Pennsylvania State University, State

College, PA, 1995.
[21] J.R. Underbrink, T.J. Mueller (Eds.), Aeroacoustic Phased Array Testing in Low Speed Wind Tunnels, Aeroacoustic Measurements, Springer, Berlin, 2002, pp.

99–217.
[22] T.F. Brooks, W.M. Humphreys Jr., Effect of directional array size on the measurement of airframe noise components, 5th AIAA/CEAS Aeroacoustics

Conference, AIAA-99-1958, Bellevue, WA, 1999.
[23] S. Oerlemans, L. Broersma, P. Sijtsma, Quantification of airframe noise using microphone arrays in open and closed wind tunnels, International

Journal of Aeroacoustics 6 (4) (2007) 309–333.
[24] F.V. Hutcheson, T.F. Brooks, Measurement of trailing edge noise using directional array and coherent output power methods, International Journal of

Aeroacoustics 1 (4) (2002) 329–354.
[25] R.K. Amiet, Refraction of sound by a shear layer, Journal of Sound and Vibration 58 (3) (1978) 467–482.
[26] G.H. Golub, C.F. Van Loan, Matrix Computations, third ed., The John Hopkins University Press, Baltimore, MD, 1996.
[27] W. Rudin, Principles of Mathematical Analysis, third ed., McGraw-Hill, New York, 1976.


	Uncertainty analysis of the standard delay-and-sum beamformer and array calibration
	Introduction
	Beamforming in aeroacoustic measurements
	Data model
	DAS beamformer
	Array calibration

	Uncertainty analysis
	Multivariate uncertainty analysis
	Monte-Carlo uncertainty analysis

	Application of uncertainty analysis to the DAS beamformer
	Numerical and experimental results
	Microphone array
	Calibration uncertainty
	DAS uncertainty
	Comparison of the multivariate and Monte-Carlo methods
	Monte-Carlo based uncertainty analysis
	Monte-Carlo based uncertainty analysis of experimental data


	Conclusions
	Acknowledgment
	Jacobian matrix
	Jacobian matrix for the CSM
	Jacobian matrix for the calibration factors
	Jacobian matrix for microphone locations
	Jacobian matrix for temperature

	Covariance matrix of the CSM
	Generating Gaussian random variables with a given covariance matrix
	Number of Monte-Carlo iterations
	More on microphone location errors
	References




